Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Am J Med Genet A ; : e63630, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647370

RESUMO

Gaucher disease (GD) is an autosomal recessively inherited lysosomal storage disorder caused by biallelic pathological variants in the GBA1 gene. Patients present along a broad clinical spectrum, and phenotypes are often difficult to predict based on genotype alone. The variant R463C (p.Arg502Cys) exemplifies this challenge. To better characterize its different clinical presentations, we examined the records of 25 current and historical patients evaluated at the National Institutes of Health. Nine patients were classified as GD1, 14 were classified as GD3, and two had an ambiguous diagnosis between GD1 and GD3. In addition, we reviewed the published literature in PubMed and Web of Science through December 2023, identifying 62 cases with an R463C variant from 18 countries. Within the NIH cohort, the most common second variants were N370S (p.N409S) and L444P (p.L483P). R463C/L444P was encountered in patients with GD1 and GD3 in both the NIH cohort and worldwide. In the literature, R463C/R463C was also reported in both GD1 and GD3, although sparse phenotypic information was shared. Often the phenotype reflected what might be predicted for the second mutant allele. This diversity of phenotypes emphasizes the need for longitudinal follow-up to assess symptom development and neurological involvement.

2.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38529501

RESUMO

Inducible pluripotent stem cells (iPSCs) derived from patient samples have significantly enhanced our ability to model neurological diseases. Comparative studies of dopaminergic (DA) neurons differentiated from iPSCs derived from siblings with Gaucher disease discordant for parkinsonism provides a valuable avenue to explore genetic modifiers contributing to GBA1-associated parkinsonism in disease-relevant cells. However, such studies are often complicated by the inherent heterogeneity in differentiation efficiency among iPSC lines derived from different individuals. To address this technical challenge, we devised a selection strategy to enrich dopaminergic (DA) neurons expressing tyrosine hydroxylase (TH). A neomycin resistance gene (neo) was inserted at the C-terminus of the TH gene following a T2A self-cleavage peptide, placing its expression under the control of the TH promoter. This allows for TH+ DA neuron enrichment through geneticin selection. This method enabled us to generate comparable, high-purity DA neuron cultures from iPSC lines derived from three sisters that we followed for over a decade: one sibling is a healthy individual, and the other two have Gaucher disease (GD) with GBA1 genotype N370S/c.203delC+R257X (p.N409S/c.203delC+p.R296X). Notably, the younger sister with GD later developed Parkinson disease (PD). A comprehensive analysis of these high-purity DA neurons revealed that although GD DA neurons exhibited decreased levels of glucocerebrosidase (GCase), there was no substantial difference in GCase protein levels or lipid substrate accumulation between DA neurons from the GD and GD/PD sisters, suggesting that the PD discordance is related to of other genetic modifiers.

3.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339105

RESUMO

Gaucher disease (GD) is a lysosomal storage disorder stemming from biallelic mutations in GBA1, characterized by glucocerebrosidase dysfunction and glucocerebroside and glucosylsphingosine accumulation. Since phenotypes of murine models of GD often differ from those in patients, the careful characterization of Gba1 mutant mice is necessary to establish their ability to model GD. We performed side-by-side comparative biochemical and pathologic analyses of four murine Gba1 models with genotypes L444P/L444P (p.L483P/p.L483P), L444P/null, D409H/D409H (p.D448H/p.D448H) and D409H/null, along with matched wildtype mice, all with the same genetic background and cage conditions. All mutant mice exhibited significantly lower glucocerebrosidase activity (p < 0.0001) and higher glucosylsphingosine levels than wildtype, with the lowest glucocerebrosidase and the highest glucosylsphingosine levels in mice carrying a null allele. Although glucocerebrosidase activity in L444P and D409H mice was similar, D409H mice showed more lipid accumulation. No Gaucher or storage-like cells were detected in any of the Gba1 mutant mice. Quantification of neuroinflammation, dopaminergic neuronal loss, alpha-synuclein levels and motor behavior revealed no significant findings, even in aged animals. Thus, while the models may have utility for testing the effect of different therapies on enzymatic activity, they did not recapitulate the pathological phenotype of patients with GD, and better models are needed.


Assuntos
Doença de Gaucher , Psicosina/análogos & derivados , Camundongos , Humanos , Animais , Idoso , Doença de Gaucher/genética , Doença de Gaucher/patologia , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Modelos Animais de Doenças , Encéfalo/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Mutação
4.
medRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37986861

RESUMO

Biallelic mutations in GBA1 result in Gaucher disease (GD), the inherited deficiency of glucocerebrosidase. Variants in GBA1 are also a common genetic risk factor for Parkinson disease (PD). Currently, some PD centers screen for mutant GBA1 alleles to stratify patients who may ultimately benefit from GBA1-targeted therapeutics. However, accurately detecting variants, especially recombinant alleles resulting from a crossover between GBA1 and its pseudogene, is challenging, impacting studies of both GD and GBA1-associated parkinsonism. Recently, the software tool Gauchian was introduced to identify GBA1 variants from whole genome sequencing. We evaluated Gauchian in 90 Sanger-sequenced patients with GD and five GBA1 heterozygotes. While Gauchian genotyped most patients correctly, it missed some rare or de novo mutations due to its limited internal database and over-reliance on intergenic structural variants. This resulted in misreported homozygosity, incomplete genotypes, and undetected recombination events, limiting Gauchian's utility in variant screening and precluding its use in diagnostics.

5.
Lancet Neurol ; 22(11): 1015-1025, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37633302

RESUMO

BACKGROUND: An understanding of the genetic mechanisms underlying diseases in ancestrally diverse populations is an important step towards development of targeted treatments. Research in African and African admixed populations can enable mapping of complex traits, because of their genetic diversity, extensive population substructure, and distinct linkage disequilibrium patterns. We aimed to do a comprehensive genome-wide assessment in African and African admixed individuals to better understand the genetic architecture of Parkinson's disease in these underserved populations. METHODS: We performed a genome-wide association study (GWAS) in people of African and African admixed ancestry with and without Parkinson's disease. Individuals were included from several cohorts that were available as a part of the Global Parkinson's Genetics Program, the International Parkinson's Disease Genomics Consortium Africa, and 23andMe. A diagnosis of Parkinson's disease was confirmed clinically by a movement disorder specialist for every individual in each cohort, except for 23andMe, in which it was self-reported based on clinical diagnosis. We characterised ancestry-specific risk, differential haplotype structure and admixture, coding and structural genetic variation, and enzymatic activity. FINDINGS: We included 197 918 individuals (1488 cases and 196 430 controls) in our genome-wide analysis. We identified a novel common risk factor for Parkinson's disease (overall meta-analysis odds ratio for risk of Parkinson's disease 1·58 [95% CI 1·37-1·80], p=2·397 × 10-14) and age at onset at the GBA1 locus, rs3115534-G (age at onset ß=-2·00 [SE=0·57], p=0·0005, for African ancestry; and ß=-4·15 [0·58], p=0·015, for African admixed ancestry), which was rare in non-African or non-African admixed populations. Downstream short-read and long-read whole-genome sequencing analyses did not reveal any coding or structural variant underlying the GWAS signal. The identified signal seems to be associated with decreased glucocerebrosidase activity. INTERPRETATION: Our study identified a novel genetic risk factor in GBA1 in people of African ancestry, which has not been seen in European populations, and it could be a major mechanistic basis of Parkinson's disease in African populations. This population-specific variant exerts substantial risk on Parkinson's disease as compared with common variation identified through GWAS and it was found to be present in 39% of the cases assessed in this study. This finding highlights the importance of understanding ancestry-specific genetic risk in complex diseases, a particularly crucial point as the Parkinson's disease field moves towards targeted treatments in clinical trials. The distinctive genetics of African populations highlights the need for equitable inclusion of ancestrally diverse groups in future trials, which will be a valuable step towards gaining insights into novel genetic determinants underlying the causes of Parkinson's disease. This finding opens new avenues towards RNA-based and other therapeutic strategies aimed at reducing lifetime risk of Parkinson's disease. FUNDING: The Global Parkinson's Genetics Program, which is funded by the Aligning Science Across Parkinson's initiative, and The Michael J Fox Foundation for Parkinson's Research.


Assuntos
População Africana , Doença de Parkinson , Humanos , População Negra/genética , Loci Gênicos , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Doença de Parkinson/etnologia , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único/genética , População Africana/genética
6.
medRxiv ; 2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37398408

RESUMO

Background: Understanding the genetic mechanisms underlying diseases in ancestrally diverse populations is a critical step towards the realization of the global application of precision medicine. The African and African admixed populations enable mapping of complex traits given their greater levels of genetic diversity, extensive population substructure, and distinct linkage disequilibrium patterns. Methods: Here we perform a comprehensive genome-wide assessment of Parkinson's disease (PD) in 197,918 individuals (1,488 cases; 196,430 controls) of African and African admixed ancestry, characterizing population-specific risk, differential haplotype structure and admixture, coding and structural genetic variation and polygenic risk profiling. Findings: We identified a novel common risk factor for PD and age at onset at the GBA1 locus (risk, rs3115534-G; OR=1.58, 95% CI = 1.37 - 1.80, P=2.397E-14; age at onset, BETA =-2.004, SE =0.57, P = 0.0005), that was found to be rare in non-African/African admixed populations. Downstream short- and long-read whole genome sequencing analyses did not reveal any coding or structural variant underlying the GWAS signal. However, we identified that this signal mediates PD risk via expression quantitative trait locus (eQTL) mechanisms. While previously identified GBA1 associated disease risk variants are coding mutations, here we suggest a novel functional mechanism consistent with a trend in decreasing glucocerebrosidase activity levels. Given the high population frequency of the underlying signal and the phenotypic characteristics of the homozygous carriers, we hypothesize that this variant may not cause Gaucher disease. Additionally, the prevalence of Gaucher's disease in Africa is low. Interpretation: The present study identifies a novel African-ancestry genetic risk factor in GBA1 as a major mechanistic basis of PD in the African and African admixed populations. This striking result contrasts to previous work in Northern European populations, both in terms of mechanism and attributable risk. This finding highlights the importance of understanding population-specific genetic risk in complex diseases, a particularly crucial point as the field moves toward precision medicine in PD clinical trials and while recognizing the need for equitable inclusion of ancestrally diverse groups in such trials. Given the distinctive genetics of these underrepresented populations, their inclusion represents a valuable step towards insights into novel genetic determinants underlying PD etiology. This opens new avenues towards RNA-based and other therapeutic strategies aimed at reducing lifetime risk. Evidence Before this Study: Our current understanding of Parkinson's disease (PD) is disproportionately based on studying populations of European ancestry, leading to a significant gap in our knowledge about the genetics, clinical characteristics, and pathophysiology in underrepresented populations. This is particularly notable in individuals of African and African admixed ancestries. Over the last two decades, we have witnessed a revolution in the research area of complex genetic diseases. In the PD field, large-scale genome-wide association studies in the European, Asian, and Latin American populations have identified multiple risk loci associated with disease. These include 78 loci and 90 independent signals associated with PD risk in the European population, nine replicated loci and two novel population-specific signals in the Asian population, and a total of 11 novel loci recently nominated through multi-ancestry GWAS efforts.Nevertheless, the African and African admixed populations remain completely unexplored in the context of PD genetics. Added Value of this Study: To address the lack of diversity in our research field, this study aimed to conduct the first genome-wide assessment of PD genetics in the African and African admixed populations. Here, we identified a genetic risk factor linked to PD etiology, dissected African-specific differences in risk and age at onset, characterized known genetic risk factors, and highlighted the utility of the African and African admixed risk haplotype substructure for future fine-mapping efforts. We identified a novel disease mechanism via expression changes consistent with decreased GBA1 activity levels. Future large scale single cell expression studies should investigate the neuronal populations in which expression differences are most prominent. This novel mechanism may hold promise for future efficient RNA-based therapeutic strategies such as antisense oligonucleotides or short interfering RNAs aimed at preventing and decreasing disease risk. We envisage that these data generated under the umbrella of the Global Parkinson's Genetics Program (GP2) will shed light on the molecular mechanisms involved in the disease process and might pave the way for future clinical trials and therapeutic interventions. This work represents a valuable resource in an underserved population, supporting pioneering research within GP2 and beyond. Deciphering causal and genetic risk factors in all these ancestries will help determine whether interventions, potential targets for disease modifying treatment, and prevention strategies that are being studied in the European populations are relevant to the African and African admixed populations. Implications of all the Available Evidence: We nominate a novel signal impacting GBA1 as the major genetic risk factor for PD in the African and African admixed populations. The present study could inform future GBA1 clinical trials, improving patient stratification. In this regard, genetic testing can help to design trials likely to provide meaningful and actionable answers. It is our hope that these findings may ultimately have clinical utility for this underrepresented population.

7.
Am J Med Genet A ; 191(10): 2647-2650, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37449546

RESUMO

Our ability to identify different variants in GBA1, the gene mutated in the lysosomal storage disorder Gaucher disease (GD), has greatly improved. We describe a multigenerational family with type 1 GD initially evaluated over three decades ago. Re-evaluating both the genotype and phenotype, we determined that one family member with genotype N370S/T369M (p.N409S/p.T408M), was likely erroneously diagnosed with GD. This case substantiates that GBA1 variant T369M, while mildly reducing glucocerebrosidase activity, does not result in GD. The observation has clinical relevance as cases with this genotype will increasingly be ascertained through screening programs in newborns and in movement disorder clinics.


Assuntos
Doença de Gaucher , Humanos , Recém-Nascido , Doença de Gaucher/diagnóstico , Doença de Gaucher/genética , Glucosilceramidase/genética , Genótipo , Fenótipo , Família , Mutação
8.
J Mov Disord ; 16(3): 321-324, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37309111

RESUMO

Biallelic mutations in GBA1 cause the lysosomal storage disorder Gaucher disease, and carriers of GBA1 variants have an increased risk of Parkinson's disease (PD). It is still unknown whether GBA1 variants are also associated with other movement disorders. We present the case of a woman with type 1 Gaucher disease who developed acute dystonia and parkinsonism at 35 years of age during a recombinant enzyme infusion treatment. She developed severe dystonia in all extremities and a bilateral pill-rolling tremor that did not respond to levodopa treatment. Despite the abrupt onset of symptoms, neither Sanger nor whole genome sequencing revealed pathogenic variants in ATP1A3 associated with rapid-onset dystonia-parkinsonism (RDP). Further examination showed hyposmia and presynaptic dopaminergic deficits in [18F]-DOPA PET, which are commonly seen in PD but not in RDP. This case extends the spectrum of movement disorders reported in patients with GBA1 mutations, suggesting an intertwined phenotype.

9.
Am J Med Genet A ; 191(7): 1783-1791, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37042183

RESUMO

Gaucher disease (GD) is an autosomal recessive disorder resulting from glucocerebrosidase deficiency due to pathologic variants in GBA1. While clinically heterogeneous, GD encompasses three types, non-neuronopathic (GD1), acute neuronopathic (GD2), and chronic neuronopathic (GD3). Newborn screening (NBS), which has made remarkable inroads in detecting certain diseases before detrimental health consequences and fatality ensues, is now being piloted for GD in several states and countries. Early on, clinical features of GD2 can overlap with GD3; hence, predicting outcome is challenging. As NBS for GD becomes more available, the increased detection of GD in neonates is inevitable. As a result, health care providers and families will be faced with uncertainty with respect to clinical management. Since more severe GBA1 variants are generally associated with neuronopathic GD, there has been an increased dependence on genotypic information. We present an infant detected by NBS with genotype D409H(p.Asp448His)/RecNciI (p.Leu483Pro; p.Ala495Pro;p.Val499=). To assist in genetic counseling, we performed a retrospective review of other patients in our cohort carrying D409H and reviewed the literature. The study illustrates the challenges faced in counseling for infants with neuronopathic GD, even with known GBA1 variants, and the tough management decisions that can ensue from detection in newborns.


Assuntos
Doença de Gaucher , Glucosilceramidase , Humanos , Recém-Nascido , Glucosilceramidase/genética , Triagem Neonatal , Doença de Gaucher/diagnóstico , Doença de Gaucher/genética , Fenótipo , Genótipo
10.
Mov Disord ; 38(5): 899-903, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36869417

RESUMO

BACKGROUND: Biallelic pathogenic variants in GBA1 are the cause of Gaucher disease (GD) type 1 (GD1), a lysosomal storage disorder resulting from deficient glucocerebrosidase. Heterozygous GBA1 variants are also a common genetic risk factor for Parkinson's disease (PD). GD manifests with considerable clinical heterogeneity and is also associated with an increased risk for PD. OBJECTIVE: The objective of this study was to investigate the contribution of PD risk variants to risk for PD in patients with GD1. METHODS: We studied 225 patients with GD1, including 199 without PD and 26 with PD. All cases were genotyped, and the genetic data were imputed using common pipelines. RESULTS: On average, patients with GD1 with PD have a significantly higher PD genetic risk score than those without PD (P = 0.021). CONCLUSIONS: Our results indicate that variants included in the PD genetic risk score were more frequent in patients with GD1 who developed PD, suggesting that common risk variants may affect underlying biological pathways. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Doença de Gaucher , Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/genética , Doença de Gaucher/complicações , Doença de Gaucher/genética , Transtornos Parkinsonianos/genética , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Fatores de Risco , Mutação
11.
J Genet Couns ; 32(3): 750-757, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36617666

RESUMO

Genomic testing increasingly challenges health care providers and patients to understand, share, and use information. The provision of polygenic risks is anticipated to complicate comprehension, communication, and risk perception further. This manuscript aims to illuminate the challenges confronting families with multiple genetic risks for Parkinson's disease. Identifying and planning for such issues may prove valuable to family members now and in the future, should neuroprotective or genotype-specific therapies become available. We present qualitative data from interviews with a multi-generational family carrying pathogenic variants in the glucocerebrosidase (GBA1) and leucine-rich repeat kinase 2 (LRRK2) genes which are associated with an increased risk for developing Parkinson's disease (PD). The family includes two brothers (heterozygous for LRRK2 p.G2019S and homozygous for GBA1 p.N409S) and their four descendants. The brothers were concordant for GD and discordant for PD. Genetic counseling and testing were provided to four of the six participants. Two years later, semi-structured interviews were conducted with the initial participants (n = 4) and two additional first-degree relatives. Interviews were transcribed and thematically analyzed, providing the basis for this report. Illuminated topics include the perceived risk of developing PD, recall of genetic information, and family communication. With the expanding use of exome and genome sequencing, we anticipate that genetic counselors will increasingly face the challenges demonstrated by this case involving multiple genetic risks for PD, limited data to clarify risk, and the inherent variability of family communication, genetic knowledge, and risk perception. This clinical case report provides a compelling narrative demonstrating the need for additional research exploring these multifaceted topics relevant to both families facing these challenges and providers striving to assist, support and guide their journey.


Assuntos
Doença de Parkinson , Proteínas Serina-Treonina Quinases , Masculino , Humanos , Proteínas Serina-Treonina Quinases/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/genética , Mutação , Comunicação
12.
Front Neurol ; 13: 1039214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330429

RESUMO

Objective: Biallelic mutations in GBA1, which encodes the lysosomal enzyme glucocerebrosidase, cause the lysosomal storage disorder Gaucher disease (GD). In addition, mutations in GBA1 are the most common genetic risk factor for future development of Parkinson's disease (PD). However, most mutation carriers will never develop parkinsonism. Olfactory dysfunction is often a prodromal symptom in patients with PD, appearing many years prior to motor dysfunction. The purpose of this study was to assess olfactory function longitudinally in individuals with and without parkinsonism who carry at least one GBA1 mutation. Methods: One hundred seventeen individuals who participated in a natural history study of GD at the National Institutes of Health were evaluated using the University of Pennsylvania Smell Identification Test (UPSIT) during a 16-year period. Seventy patients with GD (13 with PD) and 47 GBA1 carriers (9 with PD) were included. Fifty-six of the total (47.9%) were seen over multiple visits, and had UPSIT screening performed two to six times, with time intervals between testing ranging from 2 to 6 years. Comparative and control data were obtained from the Parkinson's Progression Markers Initiative (PPMI) database (519 individuals, including 340 with idiopathic PD and 179 healthy controls). Statistical analysis was performed using R. Results: Severe hyposmia and anosmia was evident in both GBA1 heterozygotes and homozygotes with PD. 84% without parkinsonism had UPSIT scores >30, and those who underwent repeated testing maintained olfactory function over time. No statistically significant difference in UPSIT scores was found between mutation carriers with and without a family history of parkinsonism. A small group of individuals without PD scored in the moderate-severe microsmia range. No significant differences in olfaction were found among our GBA1-PD cohort and idiopathic PD cohort obtained from PPMI.

16.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202076

RESUMO

Mutations in GBA1, the gene encoding glucocerebrosidase, are common genetic risk factors for Parkinson disease (PD). While the mechanism underlying this relationship is unclear, patients with GBA1-associated PD often have an earlier onset and faster progression than idiopathic PD. Previously, we modeled GBA1-associated PD by crossing gba haploinsufficient mice with mice overexpressing a human mutant α-synuclein transgene (SNCAA53T), observing an earlier demise, shorter life span and faster symptom progression, although behavioral testing was not performed. To assess whether gba+/-//SNCAA53T mice exhibit a prodromal behavioral phenotype, we studied three cardinal PD features: olfactory discrimination, memory dysfunction, and motor function. The longitudinal performance of gba+/-//SNCAA53T (n = 8), SNCAA53T (n = 9), gba+/- (n = 10) and wildtype (n = 6) mice was evaluated between ages 8 and 23 months using the buried pellet test, novel object recognition test and the beam walk. Fifteen-month-old gba+/-//SNCAA53T mice showed more olfactory and motor deficits than wildtype mice. However, differences between gba+/-//SNCAA53T and SNCAA53T mice generally did not reach statistical significance, possibly due to small sample sizes. Furthermore, while gba haploinsufficiency leads to a more rapid demise, this might not result in an earlier prodromal stage, and other factors, including aging, oxidative stress and epigenetics, may contribute to the more fulminant disease course.


Assuntos
Mutação , Doença de Parkinson/etiologia , Fenótipo , beta-Glucosidase/genética , Alelos , Animais , Modelos Animais de Doenças , Feminino , Genótipo , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , beta-Glucosidase/metabolismo
17.
Mol Genet Metab ; 131(3): 358-363, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33183916

RESUMO

The clinical phenotype of Gaucher disease type 3 (GD3), a neuronopathic lysosomal storage disorder, encompasses a wide array of neurological manifestations including neuro-ophthalmological findings, developmental delay, and seizures including progressive myoclonic epilepsy. Electroencephalography (EEG) is a widely available tool used to identify abnormalities in cerebral function, as well as epileptiform abnormalities indicating an increased risk of seizures. We characterized the EEG findings in GD3, reviewing 67 patients with 293 EEGs collected over nearly 50 years. Over 93% of patients had some form of EEG abnormality, most consisting of background slowing (90%), followed by interictal epileptiform discharges (IEDs) (54%), and photoparoxysmal responses (25%). The seven patients without background slowing were all under age 14 (mean 6.7 years). There was a history of seizures in 37% of this cohort; only 30% of these had IEDs on EEG. Conversely, only 56% of patients with IEDs had a history of seizures. These observed EEG abnormalities document an important aspect of the natural history of GD3 and could potentially assist in identifying neurological involvement in a patient with subtle clinical findings. Additionally, this comprehensive description of longitudinal EEG data provides essential baseline data for understanding central nervous system involvement in neuronopathic GD.


Assuntos
Epilepsias Mioclônicas/genética , Doença de Gaucher/genética , Malformações do Sistema Nervoso/genética , Convulsões/genética , Adulto , Criança , Eletroencefalografia , Epilepsias Mioclônicas/diagnóstico por imagem , Epilepsias Mioclônicas/patologia , Feminino , Doença de Gaucher/diagnóstico por imagem , Doença de Gaucher/patologia , Humanos , Masculino , Malformações do Sistema Nervoso/diagnóstico por imagem , Malformações do Sistema Nervoso/patologia , Fenótipo , Convulsões/diagnóstico por imagem , Convulsões/patologia , Adulto Jovem
18.
Trends Mol Med ; 26(10): 913-923, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32948448

RESUMO

Mutations in GBA1, the gene encoding the lysosomal hydrolase glucocerebrosidase (GCase), are a risk factor for parkinsonism. Pursuing the potential mechanisms underlying this risk in aging neurons, we propose a new network uniting three major lysosomal proteins: (i) cathepsin D (CTSD), which plays a major role in α-synuclein (SNCA) degradation and prosaposin (PSAP) cleavage; (ii) PSAP, essential for GCase activation and progranulin (PGRN) transport; and (iii) PGRN, impacting lysosomal biogenesis, PSAP trafficking, and CTSD maturation. We hypothesize that alterations to this network and associated receptors modify lysosomal function and subsequently impact both SNCA degradation and GCase activity. By exploring the interactions between this protein trio and each of their respective transporters and receptors, we may identify secondary risk factors that provide insight into the relationship between these lysosomal proteins, GCase, and SNCA, and reveal novel therapeutic targets.


Assuntos
Catepsina D/genética , Precursores Enzimáticos/genética , Lisossomos/genética , Transtornos Parkinsonianos/genética , Progranulinas/genética , Saposinas/genética , Animais , Humanos , Mutação/genética , Transporte Proteico/genética
19.
Neurology ; 95(15): e2119-e2130, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32764102

RESUMO

OBJECTIVE: To gather natural history data to better understand the changing course of type 2 Gaucher disease (GD2) in order to guide future interventional protocols. METHODS: A structured interview was conducted with parents of living or deceased patients with GD2. Retrospective information obtained included disease presentation, progression, medical and surgical history, medications, family history, management, complications, and cause of death, as well as the impact of disease on families. RESULTS: Data from 23 patients were analyzed (20 deceased and 3 living), showing a mean age at death of 19.2 months, ranging from 3 to 55 months. Fourteen patients were treated with enzyme replacement therapy, 2 were treated with substrate reduction therapy, and 3 underwent bone marrow transplantation. Five patients received ambroxol and one was on N-acetylcysteine, both considered experimental treatments. Fifteen patients had gastrostomy tubes placed; 10 underwent tracheostomies. Neurologic disease manifestations included choking episodes, myoclonic jerks, autonomic dysfunction, apnea, seizures, and diminished blinking, all of which worsened as disease progressed. CONCLUSIONS: Current available therapies appear to prolong life but do not alter neurologic manifestations. Despite aggressive therapeutic interventions, GD2 remains a progressive disorder with a devastating prognosis that may benefit from new treatment approaches.


Assuntos
Gerenciamento Clínico , Progressão da Doença , Doença de Gaucher/patologia , Pré-Escolar , Efeitos Psicossociais da Doença , Feminino , Humanos , Lactente , Masculino , Estudos Retrospectivos
20.
Mov Disord ; 35(2): 359-365, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31785030

RESUMO

BACKGROUND: Although the association between mutations in GBA1 and parkinsonism is well established, most GBA1 mutation carriers never develop parkinsonism, implicating the contribution of other genetic, epigenetic, and/or environmental modifiers. OBJECTIVES: To identify factors predisposing to or offering protection from parkinsonism among siblings with Gaucher's disease) discordant for Parkinson disease (PD). METHODS: This prospective, longitudinal study included nine sib pairs with Gaucher disease, but discordant for PD. Assessments included neurological, neuropsychological, olfactory, motor, nonmotor evaluations, and transcranial sonography. Validated mood and nonmotor questionnaires assessed fatigue, olfactory dysfunction, sleepiness, sleep disturbances, anxiety, and/or depression. RESULTS: There was no relationship between Gaucher treatments, genotype, or splenectomy and PD. Male sex predominance, younger age, and milder Gaucher disease symptoms were observed among the patients with PD. Substantia nigral echogenicity, olfactory dysfunction, serum triglycerides levels, and 9-hole peg scores, but not caffeine, alcohol, or tobacco use, environmental exposures, uric acid, or glucose levels, differed significantly between groups. CONCLUSIONS: Longitudinal evaluation of discordant sib pairs may help identify PD risk factors. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Gaucher/genética , Glucosilceramidase/genética , Transtornos Parkinsonianos/genética , Adulto , Feminino , Doença de Gaucher/diagnóstico , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Mutação/genética , Transtornos Parkinsonianos/diagnóstico , Fatores de Risco , Irmãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...